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Abstract
A new summation formula for Clausen’s series 3F2(1) is derived in two different
ways and used to obtain a reduction formula for the Kampé de Fériet function
F

p:2;0
q:2;0 [−x, x]. The specialization p = q = 0 of the latter result reduces

to a Kummer-type transformation formula for the generalized hypergeometric
function 2F2(x) which has recently been deduced by R B Paris who employed
other methods.

PACS number: 02.30.Gp
Mathematics Subject Classification: 33C20, 33C50

1. Introduction

Recently, Paris [7] deduced a Kummer-type transformation formula for the generalized
hypergeometric function 2F2(x), namely

2F2

(
a, c + 1;

b, c; x

)
= ex

2F2

(
b − a − 1α + 1;

b, α; −x

)
, (1.1a)

where α is defined by

α ≡ c(1 + a − b)

a − c
. (1.1b)

Equation (1.1a) is analogous to the well-known and much frequented Kummer’s first
transformation formula for the confluent hypergeometric function 1F1(x), which states that

1F1

(
a;
b; x

)
= ex

1F1

(
b − a;

b; −x

)
. (1.2)

The result given by equations (1.1) provides a generalization of a previous result (where
c = 1

2a so that α = 1 + a − b) due to Exton [3] which was rederived by Miller [6]. Moreover,
the result given by equations (1.1) contains Kummer’s equation (1.2) which can be seen by
letting b = c + 1 in equations (1.1).
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Paris deduced equations (1.1) in [7] by essentially employing the beta (integral) transform
of the confluent function as a representation for 2F2(x), an addition theorem for the confluent
function 1F1(x + y), and equation (1.2). In the present investigation, in section 2 we shall
derive in two different ways an apparently new summation formula for Clausen’s series 3F2(1)

which we utilize in section 3 to obtain a reduction formula for the Kampé de Fériet (double
generalized hypergeometric) function F

p:2;0
q:2;0 [−x, x]. The specialization p = q = 0 of the

result just alluded to then immediately yields equations (1.1).
It is well known that generalized hypergeometric functions pFq(x) appear ubiquitously as

solutions to a plethora of problems in mathematics, statistics and mathematical physics. Thus
the results given by equations (1.1) and (2.1) should eventually prove useful in a wide range
of applications.

2. Summation formulae

We shall show for nonnegative integers n that

3F2

(−n, a, c + 1;
b, c; 1

)
= (b − a − 1)n(α + 1)n

(b)n(α)n
, (2.1)

where (b)n ≡ �(b + n)/�(b) is the Pochhammer symbol and α is given by equation (1.1b).
This summation formula is curiously much different from others of its kind since α =
c(1 + a − b)/(a − c) is obviously not a linear first degree combination of the free (complex)
parameters a, b and c; moreover, it is not even a rational quotient of the latter because of the
presence of c in the numerator of α. (See [2, 9] for other summation theorems for 3F2(1).) We
shall see that equation (2.1) is a corollary of the following lemma.

Lemma 1. For Re(b − a − f ) > 1 and α defined by equation (1.1b)

3F2

(
f, a, c + 1;

b, c; 1

)
= (c − a)(α − f )

c

�(b)�(b − a − f − 1)

�(b − a)�(b − f )
. (2.2)

To show this we observe that (c + 1)p/(c)p = 1 + p/c and so we have

3F2

(
f, a, c + 1;

b, c; 1

)
=

∞∑
p=0

(f )p(a)p

(b)pp!
+

1

c

∞∑
p=1

(f )p(a)p

(b)p(p − 1)!
.

Adjusting the summation index in the latter sum so that it starts at p = 0 upon noting that
(a)p+1 = a(a + 1)p it is readily seen that

3F2

(
f, a, c + 1;

b, c; 1

)
= 2F1

(
f, a,

b; 1

)
+

af

bc
2F1

(
f + 1, a + 1;

b + 1; 1

)
.

If Re(b−a−f ) > 1 we may apply Gauss’s summation formula to each 2F1(1) thus obtaining

3F2

(
f, a, c + 1;

b, c; 1

)
= �(b)�(b − a − f )

�(b − a)�(b − f )
+

af

bc

�(b + 1)�(b − a − f − 1)

�(b − a)�(b − f )

= �(b)�(b − a − f − 1)

�(b − a)�(b − f )

[
(b − a − f − 1) +

af

c

]
.

It is easily verified that the expression in brackets is equal to (c − a)(α − f )/c thus giving
equation (2.2).

In equation (2.2) now set f = −n, where n is a nonnegative integer. Hence

3F2

(−n, a, c + 1;
b, c; 1

)
= (c − a)(α + n)

c

�(b)�(b − a − 1 + n)

�(b − a)�(b + n)
, (2.3)



A summation formula for Clausen’s series 3F2(1) 3543

where from equation (1.1b) α = c(b − a − 1)/(c − a). The condition Re(b − a + n) > 1
becomes superfluous since the latter sum 3F2(1) terminates.

Since α + n = α(1 + α)n/(α)n, equation (2.3) may be written as

3F2

(−n, a, c + 1;
b, c; 1

)
=

[
c − a

c

c(b − a − 1)

c − a

�(b − a − 1)

�(b − a)

]
(1 + α)n(b − a − 1)n

(α)n(b)n
.

The expression in brackets reduces to unity thus proving the result given by equation (2.1).
Alternatively, the summation formula (2.1) may also be obtained by utilizing a two-term

transformation for Clausen’s series 3F2(1), which evidently is due originally to Kummer (1836)
(see [1, p 142]) and states that

3F2

(
a, b, c;
d, e; 1

)
= �(e)�(d + e − a − b − c)

�(e − c)�(d + e − a − b)
3F2

(
c, d − a, d − b;
d, d + e − a − b; 1

)
. (2.4)

This result is additionally one of numerous two-term relations deduced by Whipple in 1925
and may easily be retrieved from the tables in Bailey’s tract [2, section 3.5] by observing that
Fp(0; 1, 4) = Fp(0; 4, 5) (cf also [5, pp 104–7] and in particular [5, p 105, equation (16)]).

Since the transformation given by equation (2.4) is essentially recorded in tabular form in
[2, 5, 9] it is not too well known. In fact, it was rederived in 1999 by Andrews et al [1, p 142]
and by Exton [4] who obtained it by using elementary series manipulation and the summation
theorems of Gauss and Saalschütz. In 2004, Rathie et al [8] rederived it again by essentially
representing Clausen’s series 3F2(1) by a beta integral transform of Gauss’s function 2F1(z)

followed by employing Euler’s identity for the latter function to obtain a second beta transform
representation for 3F2(1). (However, the authors in [8] neglected to mention that the condition
Re c > 0 which is necessary for the two respective beta transforms to exist can be waived by
appealing to the principle of analytic continuation.)

In order to obtain equation (2.1) from equation (2.4) let c = −n, b = d + 1 in the latter
so that

3F2

(−n, a, d + 1;
e, d; 1

)
= �(e)�(e − a − 1 + n)

�(e + n)�(e − a − 1)
3F2

(−n, d − a,−1;
d, e − a − 1; 1

)

= (e − a − 1)n

(e)n

[
1 +

(−n)(d − a)(−1)

d(e − a − 1)

]

= (e − a − 1)n

(e)n

d − a

d(e − a − 1)

[
d(e − a − 1)

d − a
+ n

]
.

Now let d �→ c and e �→ b. Thus since α = c(b − a − 1)/(c − a) we have

3F2

(−n, a, c + 1;
b, c; 1

)
= (b − a − 1)n

(b)n

1

α
(α + n).

Finally, recalling that α + n = α(α + 1)n/(α)n we deduce equation (2.1).

3. Reduction and transformation formulae

Let (Hh) denote the sequence of parameters (H1,H2, . . . , Hh) and for nonnegative integers
n define the product of Pochhammer symbols ((Hh))n ≡ (H1)n(H2)n . . . (Hh)n, where when
h = 0 the product is understood to reduce to unity. Consider now the double sum S defined by

S ≡
∞∑

m=0

∞∑
n=0

((Hh))m+n((Aa))m((Bb))n

((Gg))m+n((Cc))m((Dd))n

xm

m!

yn

n!
, (3.1)

which we assume to be absolutely convergent.
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Employing series rearrangement equation (3.1) may be written as

S =
∞∑

n=0

n∑
m=0

((Hh))n((Aa))m((Bb))n−m

((Gg))n((Cc))m((Dd))n−m

xm

m!

yn−m

(n − m)!
.

Since (α)n−m = (−1)m(α)n/(1 − α − n)m (cf [9, p 239, equation (I.9)]) which provides when
α = 1 in particular 1/(1)n−m = 1/(n − m)! = (−1)m(−n)m/n!, we have

S =
∞∑

n=0

((Hh))n((Bb))n

((Gg))n((Dd))n

yn

n!

n∑
m=0

(−n)m((Aa))m((1 − Dd − n))m

((Cc))m((1 − Bb − n))m
(−1)m(b−d+1) (x/y)m

m!

and this may be written simply as

S =
∞∑

n=0

((Hh))n((Bb))n

((Gg))n((Dd))n

yn

n!
a+d+1Fb+c

(−n, (Aa), (1 − Dd − n);
(Cc), (1 − Bb − n); (−1)b−d+1 x

y

)
.

The double series defining S in equation (3.1) may be identified with a Kampé de Fériet
function (see [11, p 63]) and so the latter result becomes

F
h:a;b
g:c;d

[
(H) : (A); (B);
(G) : (C); (D); x, y

]

=
∞∑

n=0

((H))n((B))n

((G))n((D))n

yn

n!
a+d+1Fb+c

(−n, (A), (1 − D − n);
(C), (1 − B − n); (−1)b−d+1 x

y

)
, (3.2)

where for brevity we have written (Hh) = (H), (Gg) = (G), etc. (See [11, p 145,
equation (30)] for the version of this result due to H M Srivastava.)

In particular, if (B) = (D) (or equivalently b = d = 0) and x = −y, then letting
(C) = (A′) and c = a′, equation (3.2) reduces substantially to

F
h:a;0
g:a′;0

[
(H) : (A) ; — ;
(G) : (A′) ; — ; −y, y

]
=

∞∑
n=0

((H))n

((G))n
a+1Fa′

(−n, (A);
(A′); 1

)
yn

n!
.

Now letting a = a′ = 2, (A) �→ (a, c + 1), (A′) �→ (b, c) and setting y = x by using
equation (2.1) we obtain the reduction formula

F
h:2;0
g:2;0

[
(H) : a, c + 1 ; — ;
(G) : b, c ; — ; −x, x

]
= h+2Fg+2

(
(H), b − a − 1, α + 1;

(G), b, α; x

)
, (3.3)

where α is given by equation (1.1b), i.e. α = c(1 + a − b)/(a − c).
Exton obtained the garbled specialization [3, equation (8)] of equation (3.3) when c = 1

2a

in which case α = 1 + a − b. (See [6, equation (1)] for the corrected version of this
result.) Another specialization already recorded in [10, p 31, equation (45)] is obtained from
equation (3.3) by setting b = c + 1 (in which case α = c so that b = α + 1) thus giving the
reduction formula of lower order

F
h:1;0
g:1;0

[
(H) : a; —;
(G) : c; —; −x, x

]
= h+1Fg+1

(
(H), c − a;
(G), c; x

)
. (3.4)

Finally, letting (H) = (G) (or equivalently h = g = 0) in equation (3.3) we obtain the
transformation formula

ex
2F2

(
a, c + 1;

b, c; −x

)
= 2F2

(
b − a − 1, α + 1;

b, α; x

)
,

which gives equation (1.1a) when x is replaced by −x. (Note also that equation (3.4) reduces
to a modified form of equation (1.2) when (H) = (G) or h = g = 0.)
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